CU-CPT9a - TLR8 Inhibitor

Quinoline compound - CAS #2165340-32-7 - InvitroFit™ PRR inhibitor

ABOUT

Specific TLR8 inhibitor

CU-CPT9a is a potent and selective inhibitor of Toll-like receptor 8 (TLR8) [1-4]. CU-CPT9a has been used to establish previously unknown functions of TLR8 as a dominant sensor of pyrogenic Gram‑positive bacteria (i.e. S. aureus) as well as having an important role in sensing Gram‑negative bacteria (i.e. E. coli and P. aeruginosa) [4]. Additionally, CU-CPT9a has been shown to exert potent anti-inflammatory effects in samples from patients with inflammatory diseases such as osteoarthritis (OA), rheumatoid arthritis (RA), and adult-onset Still’s disease (AOSD) [1].

Mode of action

Under normal conditions, the binding of a TLR8 agonist, such as R848 or ssRNA, induces two TLR8 protomers to be brought into proximity and initiates downstream NF-κB-dependent signaling [1]. CU‑CPT9a binds to and stabilizes the TLR8 dimer in its resting state. Subsequently, the stabilization of the resting state prevents TLR8 from undergoing the necessary conformational change for activation [1]. Therefore, CU‑CPT9a prevents TLR8 activation and antagonizes any binding of TLR8 ligands. Importantly, CU-CPT9a blocks the activation of TLR8 and the subsequent NF-κB signaling without having any effect on other TLRs, especially the closely related TLR7 [1-3].

 

Key features of CU-CPT9a

  • CU-CPT9a specifically inhibits TLR8.
  • CU-CPT9a binds directly to TLR8 and blocks the conformational change needed for activation.
  • InvitroFit™: each lot of CU-CPT9a is highly pure (≥95%) and functionally tested.

 

References:

1. Zhang S. et al., 2018. Small-molecule inhibition of TLR8 through stabilization of its resting state. Nat Chem Biol, 14(1):58-64.
2. Hu Z. et al., 2022. Protocol for evaluation and validation of TLR8 antagonists in HEK-Blue cells via secreted embryonic alkaline phosphatase assay. STAR Protoc. 3(1):101061.
3. Hu Z. et al., 2018. Small-molecule TLR8 antagonists via structure-based rational design. Cell Chem Biol. 25(10):1286-91.
4. Moen S.H. et al., 2019. Human Toll-like Receptor 8 (TLR8) is an Important Sensor of Pyogenic Bacteria and Is Attenuated by Cell Surface TLR Signaling. Front Immunol, 10:1209.

All products are for research use only, and not for human or veterinary use.

InvitroFit™

InvitroFit™ is a high-quality standard specifically adapted for in vitro studies of inhibitors. InvitroFit™ products are highly pure (≥95%) and guaranteed free of bacterial contamination, as confirmed using HEK Blue™ TLR2 and HEK Blue™ TLR4 cellular assays. Each lot is rigorously tested for functional activity using validated (or proprietary) cellular models. This grade ensures reliability and reproducibility for your research applications.

SPECIFICATIONS

Specifications

Synonyms
2-Methyl-4-(7-methoxyl-4quinolinyl)-phenol, Phenol,4-(7-methoxy4-quinolinyl)-2-methyl
CAS number
2165340-32-7
Chemical formula

C17H15NO2

Molecular weight
265.31 g/mol
Purity
≥ 95% (UHPLC)
Solubility

100 mM in DMSO

Working concentration

1 - 10 μM for cell culture assays

Endotoxin

Negative (tested using EndotoxDetect™ assay)

Tested applications

In vitro cellular assays

Quality control

Each lot is functionally tested and validated using cellular assays.

CONTENTS

Contents

  • Product: 
    CU-CPT9a
  • Cat code: 
    inh-cc9a
  • Quantity: 
    10 mg
Includes:

5 ml of CU-CPT9a Diluent

Notes:
  • CU-CPT9a is provided as a dried powder.
  • CU-CPT9a Diluent is provided as a clear solution.

Shipping & Storage

  • Shipping method:  Room temperature
  • Storage:

    • Upon receipt, store CU-CPT9a at -20 °C and CU-CPT9a Diluent at 4 °C
    Stability: Reconstituted product in DMSO is stable for at least 3 months at -20°C.

    Caution:

    • Avoid repeated freeze-thaw cycles

Details

TLR7 and TLR8

TLR7 and TLR8 are endosomal pattern recognition receptors that share structural homology [1]. Both receptors are activated by single-stranded RNA (ssRNA) molecules, however, they exhibit different ligand-binding specificities and cellular expression patterns suggesting that they have nonredundant specialized roles.

TLR7 is essentially expressed by plasmacytoid dendritic cells (pDCs) but is also found in B cells and other myeloid cells [2] while TLR8 is highly expressed by myeloid cells and is absent from pDCs and B cells [2]. 

The endosomal distribution of TLR7 and TLR8 allows them to scan for the presence of microbial RNA in the phagocytic cargo. Their activation leads to NF-κB-, AP1-, and interferon regulatory factor (IRF)-mediated production of type I interferons (IFN-α/β) and pro-inflammatory cytokines [2].

Structural analyses have revealed that both TLR7 and TLR8 possess two binding sites (designated as Site 1 and Site 2) which do not share the same specificities.

Site 1 is highly conserved between TLR7 and TLR8 and binds nucleosides (guanosine (G) for TLR7 and uridine (U) for TLR8) or base analogs. The ligand preference for TLR7 and TLR8 is thus explained by the presence of specific residues in Site 1. Site 1 occupancy allows receptor dimerization and signaling.

Site 2 is less conserved and binds ssRNA with U(U) and U(G) motifs, respectively [3, 4]. Of note, ssRNA-binding to Site 2 is not sufficient for the formation of a signaling-competent TLR dimer but it strongly enhances the binding affinity of Site 1 [3, 4]. Thus, TLR7 and TLR8 appear to sense distinct RNA-degradation products rather than full-length ssRNAs [4].

 

1. Chuang T.H. & Ulevitch R.J., 2000. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8, and hTLR9. Eur Cytokine Netw, 11:372-8.
2. Georg P. & Sander L.E., 2019. Innate sensors that regulate vaccine responses. Curr. Op. Immunol. 59:31.
3. Zhang Z. et al., 2018. Structural analyses of Toll-like receptor 7 reveal detailed RNA sequence specificity and recognition mechanism of agonistic ligands. Cell Rep. 25:3371.
4. Tanji H. et al., 2015. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat. Struct. Mol. Biol. 22:109.

 

Chemical structure of CU-CPT9a

Chemical structure of CU-CPT9a

DOCUMENTS

Documents

CU-CPT9a

Safety Data Sheet

Technical Data Sheet

Safety Data Sheet

Certificate of analysis

Need a CoA ?

CUSTOMER SERVICE & TECHNICAL SUPPORT

Question about this product ?