Invivogen
Menu

InvivoGen's product citations

Citations

InvivoGen’s products are frequently cited in peer-reviewed publications for a wide variety of applications and uses. Browse our product citations below.
Please note: By clicking on the product name, you can access via the ‘Citations’ tab all references of the product (click ‘load more’).

Citations search

You can search by ‘Product Name’ or ‘Year’.

Find a citation by product name
Enter a year of publication
Product Citation Year Journal Authors Page
Blasticidin Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
HEK-Blue™ Detection Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
Normocin® - Antimicrobial Reagent Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
Human NOD2 Reporter HEK293 Cells (NF-κB) Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
MDP Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
iE-DAP Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
Pam3CSK4 Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
M-TriLYS Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
L18-MDP Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
C12-iE-DAP Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. 2022 Nature Stafford C.A. et al. DOI: 10.1038/s41586-022-05125-x
Primocin® Optimized human intestinal organoid model reveals interleukin-22-dependency o... 2022 Cell Stem Cell He G.W. et al. DOI: 10.1016/j.stem.2022.08.002
Poly(dA:dT) HSP27 Attenuates cGAS-Mediated IFN-β Signaling through Ubiquitination of cGAS... 2022 Viruses Li X. et al. DOI: 10.3390/v14091851
Chloroquine HSP27 Attenuates cGAS-Mediated IFN-β Signaling through Ubiquitination of cGAS... 2022 Viruses Li X. et al. DOI: 10.3390/v14091851
Zeocin® Endogenous tagging reveals a mid-Golgi localization of the glycosyltransferas... 2022 Biochim Biophys Acta Mol Cell Res. Truberg J. et al. DOI: 10.1016/j.bbamcr.2022.119345
MDP Postbiotics engage IRF4 in adipocytes to promote sex-dependent changes in blo... 2022 Physiol Rep. Duggan B.M. et al. DOI: 10.14814/phy2.15439
LPS-EB (LPS from E. coli O111:B4) Postbiotics engage IRF4 in adipocytes to promote sex-dependent changes in blo... 2022 Physiol Rep. Duggan B.M. et al. DOI: 10.14814/phy2.15439
Rapamycin The mitochondrial protein OPA1 regulates the quiescent state of adult muscle ... 2022 Cell Stem Cell Baker N. et al. DOI: 10.1016/j.stem.2022.07.010
Torin 1 The mitochondrial protein OPA1 regulates the quiescent state of adult muscle ... 2022 Cell Stem Cell Baker N. et al. DOI: 10.1016/j.stem.2022.07.010
Zeocin® Disruption of nuclear envelope integrity as a possible initiating event in ta... 2022 Cell Rep. Prissette M. et al. DOI: 10.1016/j.celrep.2022.111249
Blasticidin Disruption of nuclear envelope integrity as a possible initiating event in ta... 2022 Cell Rep. Prissette M. et al. DOI: 10.1016/j.celrep.2022.111249

Pages

Customer Service
& Technical Support
Contact us
Shopping cart is empty